
Polynomial Approximation for Binary Nonlinear Programming

Luca Mencarelli1, Sourour Elloumi2,3

1 Dipartimento di Informatica, Università di Pisa, I-56127 Pisa, Italy
luca.mencarelli@unipi.it

2 UMA, ENSTA Paris, Institut Polytechnique de Paris, F-91120 Palaiseau, France
sourour.elloumi@ensta-paris.fr

3 CEDRIC-Cnam, 292 rue saint Martin, F-75141 Paris Cedex 03, France

Abstract

In this paper, we present a simple heuristic approach based on polynomial approx-
imation for binary nonlinear unconstrained optimization: we consider binary nonlinear
programs, we replace the objective functions with a Lagrange multivariate polynomial in-
terpolation computed at the Smolyak grid points, we solve the corresponding polynomial
program via standard linearization, and we compute the original objective value at the
minimum of the polynomial approximation. We present preliminary promising compu-
tational results by comparing the proposed algorithm against two exact MINLP solvers,
namely Couenne and Scip, on several synthetic instances.

Keywords : Binary programming, polynomial approximation, standard linearization.

1 Introduction
We consider the binary nonlinear (possibly non-convex) unconstrained optimization problem:

min
x∈{0,1}n

f(x) . (BNP)

We suppose that computing f(x) for x ∈ {0, 1}n is relatively easy. BNP is at least NP-hard
since it is a generalization of Binary Quadratic Optimization Problems (BQPs): BQPs are
BNPs with quadratic objective function. Moreover, when the objective function of BNP is
polynomial, we obtain unconstrained 0-1 polynomial programs.

2 PA4BNP Algorithm
The pseudo-code of heuristic algorithm we propose is reported in Alg. 1. Initially, we build

a multivariate polynomial interpolation of the function f(x) over an initial set of binary points
S1 (Step 3). Then, we solve the polynomial approximation (Step 4) and obtain a set of feasible
solutions, which we eventually add to the set of approximating point (Step 7). Starting from
these latter points, we optionally perform a LocalSearch to improve the quality of the solutions
by exploring local neighbourhoods of each solution (Steps 9-12): one way to implement this
procedure is reported in Alg. 2. In the next subsections we give few more details about the
main steps of PA4BNP algorithm.

2.1 Building the polynomial approximation (Step 3)

Initially, we build a multivariate Lagrange polynomial interpolation PI(x) of the function
f(x) [3] over the Smolyak (sparse) grid, such that

Algorithm 1 PA4BNP Algorithm
Input: an instance P of BNP, a set S of binary points, and parameters K and q
Output: a feasible solution x∗ for P

1: initialization: S1 := S and x∗
1 := arg minx∈S1 f(x), t := 1

2: while t ≤ T do
3: build the polynomial interpolation PI(x) of f(x) with respect to set St

4: minimize PI(x) over x ∈ {0, 1}n and obtain K feasible solutions x̃1, . . . , x̃K

5: St+1 := St and x∗
t+1 := x∗

t

6: for k = 1, . . . , K do
7: if x̃k /∈ St+1, then St+1 := St+1 ∪ {x̃k}
8: if f(x̃k) < f(x∗

t+1), then x∗
t+1 := x̃k

9: obtain q candidate points xLS
1 , . . . , xLS

q , starting from x̃k

10: for i = 1, . . . , q do
11: if xLS

i /∈ St+1, then St+1 := St+1 ∪ {xLS
i }

12: if f(xLS
i) < f(x∗

t+1), then x∗
t+1 := xLS

i

13: if x∗
t+1 = x∗

t , then break
14: t := t + 1
15: return x∗

t+1

• the interpolation suffers less from curse-of-dimensionality than uniform grid points, such
as Latin hypercube, and

• the error bound between the true optimum and the optimum estimated by corresponding
polynomial approximation has a weaker dependence on dimensionality n.

Multivariate Lagrange polynomial interpolation PI(x) is defined as the linear combination
of the Lagrange basis polynomials, composed by multivariate polynomials of degree ≤ d (we
set d := 4 in computational experiments), so that PI(x) has degree at most d. We have as
many Lagrange polynomials as there are interpolating points, i.e., |St|. With the previous
approach we obtain quite sparse approximating polynomials.

In order to avoid the so-called Runge’s phenomenon, the nodes are computed using Chebyshev-
Gauss-Lobatto and Clenshaw-Curtis equidistant nodes. This approach is already been success-
fully exploited in the contest of black-box optimization for Smolyak grid built on Chebyshev
extrema, see the seminal paper [1].

In computational experiments, we use the Julia package SmolyakApprox.jl [5], and for
the multivariate Lagrange polynomial interpolation we use the lagrange_nd C++ package
developed by John Burkardt [2].

2.2 Solving the polynomial approximation (Step 4)
We deal with the polynomial approximated problem, by applying standard linearization and

solving the corresponding BLP. In particular, we consider the 0-1 (unconstrained) polynomial
optimization problems:

min
x∈{0,1}n

PI(x), with PI(x) =
∑
p≤m

ap

∏
i∈Mp

xi , (1)

where m is the number of monomials, each of them containing the variables whose indexes
belong to Mp (p ≤ m). In order to obtain a BLP, we replace each monomial with an additional
variable yp such that:

yp ≤ xi ∀i ∈ Mp (2)
yp ≥

∑
i∈Mp

xi − (|Mp| − 1) (3)
yp ≥ 0 . (4)

Note that if ap < 0 it is enough to add constraints (2) and (4) to problem (1), while if ap > 0
we add only constraints (3) and (4). In our case, standard linearization technique is enough to
solving problem (1), since we are dealing with sparse polynomials. In the implementation, we
maintain a solution pool of the best K solutions found by the algorithm used to solve problem
(1) (see Section 3).

2.3 LocalSearch (Steps 9-12)

We implement also several LocalSearch variants, by differently exploring the neighbourhoods
of an initial solution obtained by flipping each binary component of the given solution:

• LS1 (see Alg. 2) which flips independently each single component of the initial solution
and take the best solution in terms of objective function,

• LS2 (see Alg. 3), which progressively flips the components of the initial solution and take
the first solution improving the objective function, and

• LS3 (see Alg. 4), which generates candidate solutions as in the LS2, but continues ex-
ploring the neighbourhoods of the initial solution while improving objective function
value.

Algorithm 2 LS1 Algorithm
Input: an instance P of BNP and a binary solution x
Output: a (possible improved) feasible solution x∗ for P

1: initialization: x∗ := x
2: for i = 1, . . . , n do
3: define a candidate solution xLS

i by flipping the i-th component of x
4: if f(xLS

i) < f(x∗), then x∗ := xLS
i

5: return x∗

Algorithm 3 LS2 Algorithm
Input: an instance P of BNP and a binary solution x
Output: a (possible improved) feasible solution x∗ for P

1: initialization: x∗ := x
2: xLS

0 := x
3: for i = 1, . . . , n do
4: define a candidate solution xLS

i by flipping the i-th component of xLS
i−1

5: if f(xLS
i) < f(x∗), then x∗ := xLS

i and break
6: return x∗

Algorithm 4 LS3 Algorithm
Input: an instance P of BNP and a binary solution x
Output: a (possible improved) feasible solution x∗ for P

1: initialization: x∗ := x, and xLS
0 := x

2: xLS
0 := x

3: for i = 1, . . . , n do
4: define a candidate solution xLS

i by flipping the i-th component of xLS
i−1

5: if f(xLS
i) < f(x∗), then x∗ := xLS

i

6: if f(xLS
i) > f(x∗), then break

7: return x∗

3 Computational experiments
All codes have been developed in Julia 1.5.3. We compare the PA4BNP using Gurobi

9.1.2 to solve the BLPs obtained by standard linearization, against two exact solver for non-
convex MINLPs, namely Couenne 0.5.8 and SCIP.jl 0.9.8 on a set of synthetic instances,
generated according to [4], i.e.,

f(x) =
∑

i≤I fi
∏

j ̸=i ∥x − zj∥αj∑
i≤I

∏
j ̸=i ∥x − zj∥αj

, (5)

with parameters: I ∈ N, zj ∈ [0, 1]n for all j ≤ I, fi ∈ R for all i ≤ I, and αj ∈ R+ for all
j ≤ I. If αj > 1, then limx7→zj ∇f(x) = 0.

We set a time limit of 300 seconds for all the algorithms, and K := 1, q := 1, and αj := 2 for
j ≤ I. We randomly generate zj for j ≤ I and the values fi’s in [−1000, 1000]. We consider
two sets of instances: the first one with zj ∈ {0, 1}n for all j ≤ I, and the second one with
zj ∈ [0, 1]n for all j ≤ I. For the first set of instances, the optimal solution is known a priori,
namely f(x∗) = mini≤I fi. The instance names are n_I_b and n_I_c for the first and second
sets, respectively. PA4BNP algorithm obtains preliminary promising computational results (see
Table 1).

Couenne SCIP PA4BNP+LS1 PA4BNP+LS2 PA4BNP+LS3

instance obj CPU obj CPU obj CPU obj CPU obj CPU

20_20_b -959.25 T.L. fail 0.15 -984.18 3.00 -984.18 2.00 -984.18 3.00
20_50_b – T.L. – T.L. -959.25 3.01 -959.25 6.03 -959.25 2.01
20_80_b – T.L. – T.L. -69.96 3.01 -71.32 4.01 -69.963 3.01
20_100_b – T.L. – T.L. -710.87 3.01 -710.87 4.01 -710.87 4.01
40_20_b -984.18 T.L. fail 0.42 -984.18 75.01 -984.18 206.03 -984.181 76.01
40_50_b – T.L. fail 2.34 -959.25 120.02 -959.25 235.09 -959.25 129.02
40_80_b – T.L. – T.L. -71.63 72.01 -71.29 112.01 -71.63 72.01
40_100_b – T.L. – T.L. -972.92 127.02 -972.92 127.03 -972.92 128.03
20_20_c -11.71 T.L. – T.L. -165.87 4.00 -165.87 6.01 -165.87 2.00
20_50_c -73.76 T.L. – T.L. -149.74 6.01 -149.74 4.01 -149.74 6.01
20_80_c – T.L. – T.L. -65.72 3.01 -65.72 4.02 -65.72 4.02
20_100_c – T.L. – T.L. -38.14 2.00 -35.50 5.02 -38.14 4.00
40_20_c -42.35 T.L. fail 86.99 -133.43 78.00 -133.43 118.01 -133.43 76.00
40_50_c – T.L. – T.L. -131.25 121.01 -131.25 167.03 -131.25 120.01
40_80_c – T.L. – T.L. -58.09 111.01 -58.09 114.02 -58.09 110.01
40_100_c – T.L. – T.L. -34.89 200.03 -34.89 110.03 -34.89 198.03

TAB. 1: Objective values and CPU times in sec. T.L. time limit. “–” no feasible solution within T.L.

References
[1] C.A. Kieslich, F. Boukouvala, and C.A. Floudas. Optimization of black-box problems using

Smolyak grids and polynomial approximations. Journal of Global Optimization, 71:845–869,
2018.

[2] lagrange_nd. https://github.com/johannesgerer/jburkardt-cpp/tree/master/
lagrange_nd.

[3] P.J. Olver. On multivariate interpolation. Studies in Applied Mathematics, 116(4):201–240,
2006.

[4] F. Schoen. A wide class of test functions for global optimization. Journal of Global Opti-
mization, 3:133–137, 1993.

[5] SmolyakApprox.jl. https://github.com/RJDennis/SmolyakApprox.jl.

https://github.com/johannesgerer/jburkardt-cpp/tree/master/lagrange_nd
https://github.com/johannesgerer/jburkardt-cpp/tree/master/lagrange_nd
https://github.com/RJDennis/SmolyakApprox.jl

